Intracellular selection, conversion bias, and the expected substitution rate of organelle genes.

نویسنده

  • J B Walsh
چکیده

A key step in the substitution of a new organelle mutant throughout a population is the generation of germ-line cells homoplasmic for that mutant. Given that each cell typically contains multiple copies of organelles, each of which in turn contains multiple copies of the organelle genome, processes akin to drift and selection in a population are responsible for producing homoplasmic cells. This paper examines the expected substitution rate of new mutants by obtaining the probability that a new mutant is fixed throughout a cell, allowing for arbitrary rates of genome turnover within an organelle and organelle turnover within the cell, as well as (possibly biased) gene conversion and genetic differences in genome and/or organelle replication rates. Analysis is based on a variation of Moran's model for drift in a haploid population. One interesting result is that if the rate of unbiased conversion is sufficiently strong, it creates enough intracellular drift to overcome even strong differences in the replication rates of wild-type and mutant genomes. Thus, organelles with very high conversion rates are more resistant to intracellular selection based on differences in genome replication and/or degradation rates. It is found that the amount of genetic exchange between organelles within the cell greatly influences the probability of fixation. In the absence of exchange, biased gene conversion and/or differences in genome replication rates do not influence the probability of fixation beyond the initial fixation within a single organelle. With exchange, both these processes influence the probability of fixation throughout the entire cell. Generally speaking, exchange between organelles accentuates the effects of directional intracellular forces.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis

Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...

متن کامل

Rates of synonymous substitution do not indicate selective constraints on the codon use of the plant psbA gene.

The psbA gene of the flowering plant chloroplast genome has a pattern of codon bias that differs from all other angiosperm chloroplast genes. In psbA, unlike all other chloroplast genes, the third-codon-position composition does not reflect the general genome compositional bias of a high A+T content. Instead, in specific synonymous groups, the codon use of psbA more closely corresponds to the t...

متن کامل

The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias.

Genes sequences from Escherichia coli, Salmonella typhimurium, and other members of the Enterobacteriaceae show a negative correlation between the degree of synonymous-codon usage bias and the rate of nucleotide substitution at synonymous sites. In particular, very highly expressed genes have very biased codon usage and accumulate synonymous substitutions very slowly. In contrast, there is litt...

متن کامل

Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes.

A comparative analysis of the transfer RNA genes in the genomes of the major kingdoms of eukaryotes and prokaryotes leads to the general conclusion that the rate of evolution of organelle tRNA genes is typically equal to of greater than that of their nuclear counterparts. Situations where this is not the case, most notably in vascular plants, are attributable to an elevated mutation rate in the...

متن کامل

Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill–Robertson Interference, in an Avian System

The ratio of nonsynonymous to synonymous substitution rates (ω) is often used to measure the strength of natural selection. However, ω may be influenced by linkage among different targets of selection, that is, Hill-Robertson interference (HRI), which reduces the efficacy of selection. Recombination modulates the extent of HRI but may also affect ω by means of GC-biased gene conversion (gBGC), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 130 4  شماره 

صفحات  -

تاریخ انتشار 1992